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Abstract--An analytical solution for the temperature and heat flux distribution in the case of a semi-infinite 
solid of constant properties is investigated. The solutions are presented for time-dependent, surface heat 
fluxes of tile forms: (i) Q~(t) = Q0(l+acoscot); and (ii) Q2(t) = Qo(l+btcosmt)., where a and b are 
controlling factors of the periodic oscillations about the constant surface heat flux Q0. The dimensionless 
(or reduced) temperature and heat flux solutions are presented in terms of decompositions Cr and Sr of 
the generalized representation of the incomplete Gamma function. It is demonstrated that the present 
analysis covers the limiting case for large times which is discussed in several textbooks, for the case of 
steady periodic-type surface heat fluxes. In addition, an illustrative example problem on heating of malig- 

nant tissues, making use of transient and long-time solutions, is also presented. 

I .  INTRODUCTION 

There are several heat conduction problems which can 
be approximated by a semi-infinite solid of constant 
properties. These heat transfer problems might be in 
terms of finite geometries where, for short times, the 
heating or coolinjg effects at the surface have not yet 
been felt very far into the material; for example, a 
step change in the surface temperature of a thick sheet 
of metal at small enough times, so that temperature 
of the center is still at its initial value. Another prob- 
lem of engineering is the penetration of the daily and 
annual temperature cycles into the earth's surface. 
The earth can be considered as a semi-infinite solid 
since its radius is so much larger than the depth to 
which the thermal fluctuations penetrate. 

It should be noted that these problems are typically 
solved by transfo:rm techniques, and solutions of sev- 
eral such problems are discussed in the heat transfer 
literature [1, 2]. However, a recent interest in the laser- 
induced processing of materials has further motivated 
engineers and sc:Lentists to explore some additional 
solutions of the semi-infinite solid which are not 
covered in the literature. Recently, Zubair and Chaudhry 
[3] have presented some closed-form temperature and 
heat flux solutions of a semi-infinite solid subject to 
time-dependent surface heat fluxes. They have dis- 
cussed the solutions for power-type, exponential-type 
and pulse-type surface heat fluxes. There are many 
engineering problems in which periodic boundary 
conditions must be considered. These are typically 
encountered in: (i) the study of fluctuations in tem- 
perature of the earth's crust due to periodic heating 
by the sun; (ii) various experimental arrangements for 
the determination of thermal diffusivity of materials ; 

(iii) the calculation of the periodic temperatures (and 
thus of periodic stresses) in the cylinder walls of 
internal combustion engines; and (iv) the theory of 
automatic temperature control systems. The objective 
of this paper is to present and discuss closed-form 
solutions for the following important cases of time- 
dependent boundary conditions : 

Ql (t) = Q0(1 +acosogt) (1) 

0.~ (t) = 0.o (l + bt cos ~ot) (2) 

where a and b are controlling factors of the periodic 
oscillations about the constant surface heat flux, Q0. 
We note that equation (1) represents the steady, 
periodic heat flux oscillations, while for the starting 
periodic-type oscillations, equation (2) may be used. 

2. MATHEMATICAL FORMULATION 

We consider a semi-infinite homogeneous and iso- 
tropic body of initial temperature T(x ,O)=y(x)  
whose surface temperature is subjected to a heat flux 
given by -k[~3T(0, t)/Ox] =f ( t ) .  The solution to this 
problem is described in Appendix A by equation (A7) 
as 

0~t/2 /'t 
T(x, t) = y(x) + ~q-~ J0y(z ) 

f-x ld, 
x exp [ ) t  J (  )'4e't-T--------~''t-r ~'t/2" (3) 

The substitution 
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NOMENCLATURE 

a controlling factor for steady periodic 
oscillations 

b controlling factor for non-steady 
periodic oscillations 

Cp specific heat at constant pressure 
[kJ kg -l  K -l] 

Cr decomposition function 
Fo Fourier number, Fo = ctt/x 2 
k thermal conductivity [W m -~ K -~] 
q~ heat flux in the x direction [W m -2] 
Q reduced (or dimensionless) heat flux 

{2~1/2 [q; q_ k(dg/dx)l/Qo } 
surface-heat flux [W m -2] 

Sr decomposition function 
t time [s] 
T temperature [K] 
x spatial variable [m]. 

Greek symbols 
a thermal diffusivity, e = k/pCp [m 2 s -l] 

F Gamma function 
0 reduced (or dimensionless) 

temperature 
[27~l/2k { T(x, l)--g(X)}/XQ_o] 

p density [kg m -3] 
z reduced or dimensionless time, z = tot 
Zo dimensionless controlling factor, 

Zo = bt 
to frequency [s-I]. 

Subscripts 
i initial 
o constant 
1 steady, periodic surface heat flux, 

Ol = Qo(1 +acostot)  
11 constant surface heat flux 
12 long-time solution 
2 non-steady periodic surface heat flux, 

Q2 = Qo(1 +btcostot) .  

~b - 4e ( t - v )  and hence k q  ) ~  4 3/2 (t--'t') 1/2 

allows us to reduce equation (3) to the form 

0(1/2 
TCx, t) = gCx) + ~ (xZ/4a),/2 

fxl/,~tf Ct_ x2 /4c@) ddp x exp ( -  ~b) ~ - .  (4) 

It should be noted that the solution given by equation 
(4) satisfies the differential equation and the initial 
and boundary conditions. 

2.1. The steady-periodic surface heat f lux  
We note that a steady, periodic-type surface heat 

flux variation given by equation (1), when substituted 
in equation (4), results in 

xQo I f+ exp(-~b)~--3~/2 TI (x, t) = 9(x) + 2kn,/z ]d++/4,, 

+acos(tot)  fx ° e x p ( - ~ b ) c o s (  tox2x] dq~ 
2/4ct t \4a~//~93/2 

~o . /'tox2\ d~b 7 
+asin(to,)  [jx2/4~, exp -+)sln j. (5) 

The solution of the above equation can be written 
in terms of the functions Cr(ct, x ; b), defined by equa- 
tions (B1) and (B2), respectively. This gives 

XOo Tl (x, t) = 9(x) + ~ [F(-- 1/2, x2/4at) + a cos (tot) 

x C r ( -  1/2, x2/4at;tox2/4ot) 

+ a sin ( t o t ) S t ( -  1/2, x2/4~t; tox2/4ct)]. (6) 

Simplifying, we find in terms of dimensionless vari- 
ables that 

0, = F ( -  1/2, 1/4Fo) 

+a[cos ( z ) C r ( -  1/2, l /4Fo;z/4Fo) 

+ sin ( z ) S r ( -  1/2, l/4Fo ; z/4ro)] (7) 

where 01, Fo and z are defined in the Nomenclature. 
On using the differentiation formula for Cr(c~, x ; b) 

and St(a, x ; b) given by equations (B13) and (B14), 
respectively, the heat flux at any x is 

,, _ k  OT~ d g +  Q0 {2F(1/Z, x2/4~t) 
qx.1 = c~x = - k  dx  2~1/~ 

+ 2a(xZ/4at) exp ( -  x 2/47t) 

+ a cos (tot) [2Cr(1/2, xE/4~t ; toxZ/4a) 

- 2 ( x  2/4~t)-1/2 exp ( - x  2/4at) cos (tot)] 

+ a sin (tot)[2Sv(1/2, x2/4at; tox2/4~) 

- 2(xZ/4~t)-l/2 exp (-x2/4ca) sin (tot)]}. (8) 

Simplifying by using equations (B4) and (B5), we find 
in terms of dimensionless variables that 

Q 1 = F ( 1/2, 1/4Fo) + a [co s (z) Cr (1/2, 1/4Fo ; z/4Fo) 

+ sin (z)Sr(1/2, 1/4Fo; z/4Fo)]. (9) 
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We note that a =: 0 reduces to the case of  constant 
surface heat flux. On substituting this value of  a in 
equations (7) and (9), we obtain 

0~ = F ( -  1/2, 1/4Fo) = 2[(1/4Fo)-~/2 exp ( -  l/4Fo) 

_ n]/2 erfc(1/2x/Fo)] (10) 

Q ~  = F(1/2, 1/4Fo) = ~z ~/2 erfc(1/2x/Fo ) (11) 

which are the same temperature and heat flux solu- 
tions as those reported by Carslaw and Jaeger [1]. 

It should be noted that for large values of  time t, 
z ~ ~ and 1/Fo --~ O. On substituting these values in 
equations (7) and (9), we find that 

0,z = -- 2[(x/n) -- (1/4Fo)-,/z exp ( -  1/4Fo)] 

+ aEcos ( T ) C r  ( -  112, O;Z) 

+ , ; i n  ( ~ ) S r ( -  1 / 2 ,  O; Z) ]  ( 1 2 )  

Q,2 = (x/x) +a[cos  ('OCt(I~2, 0; %) 

+ s i n  (T)Sr(1/2,0;X)] (13) 

where Z = ~ox2/4~'. 
The above solutions can be simplified further by 

using equations (B7)-(B10), to give 

O,z = - 2 [(x/n) - (1/4Fo) - ' /2  exp ( - 1/4Fo)] 

+ ~ exp ( -  x/2%) cos [(x/2%) + x / 4 - ' r ]  (14) 

Q,z = rt'/z{ 1 +c, exp (-x/Z%)[cos (~-x/2%)]}. (15) 

The graphical representations of  equations (7) and 
(9) are shown in Figs. 1 and 2, respectively. In these 
figures reduced temperature and heat fluxes are plotted 
in terms of  reduced time parameters ~ and Fo, for 
the case when the controlling factor a of  the steady- 
periodic oscillatiens is 0.5. As expected, we note that 
the amplitude of  temperature and flux oscillations 
increases with Fo, however, for large values of  • these 
oscillations die away. On comparing reduced tem- 
perature plots with reduced heat flux plots, we note 

2.00  = = i i i i i i  ' ' i 
i i i i i  i i i i i i ~ ! [ 
i i i i i : ,  i i ! i i  i i 

1 .50 i ~ i  ............... i""" '  i i i i  i - i~ '  i . . . . . .  i ' - - " i " - - i  

i ~ '  . ~  i ; i i i i ! i  i i 
i i ~ \ i  i i l i i l l i  i i i 

T i i i I i  . . . .  ' i i l  ' i  i i 
( ~  1 .00-  ~ ! i  ii i i i i i i i !  i I ' ' ~  , i l i '  ' ~ ' i 

0 .50-  = 1.00 - i '  4 - - . ,  f i"~ ~ - - " i " - ! - -  

~ i i ! ! i ' , i  , '= i ' ~ i i i  
! i i i i i i ~ i  i i i i ~ ,  

moo i i i i i i i i i  i ', [ l i t l I i  i 
1E-O1 2 3 4 5 1E+O0 2 3 4 5 1E+01 2 3 4 5 

Fig. 2. Dimensionless heat flux profiles as a function ofz due 
to a steady-periodic heat flux, for a controlling factor a = 0.5. 

that the temperature and heat flux variations are out  
of  phase with each other. 

It is interesting to compare long-time solutions with 
the transient solutions for reduced temperature and 
heat fluxes. Figure 3 shows the comparison of  reduced 
temperature plots, while Fig. 4 shows the heat flux 
plots for the case when the controlling factor a of  the 
steady-periodic oscillations is 0.5 and Fo = 10.0. It 
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Fig. 3. Dimensionless temperature profiles as a function of z 
due to a steady-periodic heat flux, for a controlling factor 

a = 0.5 and Fo = 10.00. 
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Fig. 1. Dimensionless temperature profiles as a function of T 
due to a steady-periodic heat flux, for a controlling factor 

a = 0.5. 
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can be seen from Fig. 3 that for low values of z, there 
is a significant difference between the steady-state and 
transient temperatures, whereas for large values of r, 
they approach the constant value. On the other hand, 
reduced heat flux plots of Fig. 4 show a somewhat 
constant difference between the steady-state and tran- 
sient solutions. 

2.2. The starting-periodic, surface heat flux 
The starting periodic-type, surface heat flux given 

by equation (2), when substituted into equation (4), 
results in 

x .  [;; 
Q0 exp ( - ¢ )  ¢3/--~ ~r2(x, t) = g(x) + ~ 2/,~, 

I °° exp ( _  ¢) cos (~°x2~ d e  
+ (bt) cos (~ot) ,)x2/4~t \4ot¢) ¢3/2 

[oo . 1'o9x2"~ de 
x (bt) sin (wt) J~/,~, exp ( -  ¢) s in  t 4 ~ )  ¢3/2 

I'bx2"~ f ;  +t-4~-)cos(oJt) ~/4~, e x p ( - ¢ )  

3.00- 

2.50- 

I 2.00- 

1.50- 
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0.00- 
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Fig. 5. Dimensionless temperature profiles as a function of z 
due to a starting-periodic surface heat flux, for Fo = 1.00; 

the effect of controlling factor %. 

in Figs. 5 and 6, respectively. All these curves are 
drawn for Fo = 1.00. We note that, as expected, the 
amplitude of temperature and heat flux oscillations 
in these figures is a strong function of the reduced 
controlling factor. It should, however, be noted that 
for large values of z, the reduced temperature and heat 
flux oscillations die away regardless of the controlling 
parameter %. 

(o x2h de /bx2  
x cos \ 4 ~ ¢ j ¢ , / 2  + t4~)s ,n  (ogt) 

x exp ( - ¢ )  sin ~°x2 d e  (16) 
2/4ctt 

which can be simplified in terms of dimensionless vari- 
ables by using equations (B1) and (B2), to give 

02 = r ( -  1/2, 1/4Fo) 

+%[cos ( z ) C r ( -  1/2, 1/4Fo;z/4Fo) 

+ sin (z)Sr( - 1/2, 1/4Fo ; z/4Fo)] 

+ (ro/4Fo) [cos (r) Cv (-- 3/2, 1/4Fo ; z/4Fo) 

+ sin (z) Sv ( - 3/2, 1/4Fo ; z/4Fo)] (17) 

where %, 02 and other dimensionless variables are 
defined in the Nomenclature. 

The heat flux at any x is calculated by differentiating 
equation (17) and using equations (B4), (B5), (B13) 
and (B 14), to give 

Q2 = F(1/2, 1/4Fo) +%[cos (z)Cv(1/2, 1/4Fo;z/4Fo) 

+ sin (z) Sv (1/2, 1/4Fo ; z/4Fo)] 

+ (%/4Fo)[cos (z)Cv(-- 1/2, 1/4Fo; z/4Fo) 

+ sin (z) Sr ( -  1/2, 1/4Fo ; z/4Fo)]. (18) 

The reduced temperature and heat flux plots for a 
non-steady periodic surface heat flux vs the reduced 
time r and controlling parameter (% = bt) are shown 

3. ILLUSTRATIVE EXAMPLE 

Heating of malignant tissues for therapeutic pur- 
poses using specially designed heating-cooling devices 
has recently become very attractive [4, 5]. The treat- 
ment, known as hyperthermia, involves heating of 
tumorous tissues in the temperature range 42~6°C 
for a specified period of time; usually 30-60 min is 
recommended. It should be noted that the tem- 
perature values within this range are not directly 
harmful to normal cells, while it is expected that can- 
cerous cells are destroyed as they are more sensitive 
to high temperatures. 

During a therapeutic treatment a specially designed 
heating-cooling device is attached to the back of a 
patient such that the heat flux provided to the patient 
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Fig. 6. Dimensionless heat flux profiles as a function ofz due 
to a starting-periodic surface heat flux, for Fo = 1.00; the 

effect of controlling factor z0. 
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Fig. 7. Temperature profiles at a depth of I0 mm from the 
surface of the skin; for co = l × I0 -4 rad s -~, T~ = 30°C, 

a = 0.5 and Q0 = 200 W m -2. 

long-term solution predicts more temperature values 
as compared with transient results. For example, in 
the critical temperature range (42-46°C), the long- 
time solution shows that the desired temperature will 
be reached in about 1.39 h compared with 1.50 h 
predicted by the transient solution. In addition, the 
transient results indicate that the heater can maintain 
the required temperature for about 1.0 h. On the other 
hand, Fig. 8 shows a considerable difference between 
the heat fluxes at the start-up of the system. As 
expected, the heat flux predicted by the transient solu- 
tion is initially zero, then increases steadily and 
reaches an asymptotic value, while the long-time solu- 
tion predicts a more or less constant heat flux with 
time. 

is a periodic function of time: Obaek= Q0( l+a  
cos cot), where a is the controlling factor of the 
periodic oscillations about the constant surface heat 
flux Q0- Modeling the patient's body as a flat wall of 
large (semi-infimte) thickness and known properties 
(p = 1000 kg m -3, C = 4180 J kg -l  K -l,  k = 0.5016 
W m - '  K-~), it is desired to study the temperature 
and the heat flux distributions at a depth of 10 mm 
from the surface of the skin using both the transient 
and long-time solutions. 

The results di:scussed below are based on the fre- 
quency of periodic oscillation co = 1 x 1 0  - 4  rad s -1, 
the initial temperature of the patient's body 
T~ = 30°C, the controlling factor a = 0.5 and the con- 
stant surface heat flux Q0 = 200 W m -2. On using 
equations (6), (8), (14) and (15), the temperature and 
heat flux distributions 10 mm from the surface of the 
skin are shown in Figs. 7 and 8, respectively. In these 
figures, the resuks are presented as a function of time 
from the start of the therapeutic treatment. It can be 
seen from the figures that there is a discrepancy 
between the transient and long-time results, par- 
ticularly for heal. flux variations. Figure 7 shows that 
the difference b,~tween the long-time and transient 
temperatures is somewhat negligible; however, the 
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Fig. 8. Heat flux profiles at a depth of I0 mm from the surface 
of the skin; for co = I × I0-4 rad s -I, T~ = 30°C, a = 0.5 and 

Q0=200Wm 2. 

4. CONCLUDING REMARKS 

The closed-form solutions of temperature and heat 
flux distributions due to time-dependent surface heat 
fluxes are discussed for steady and non-steady, 
periodic-type surface heat fluxes in a semi-infinite, 
homogeneous and isotropic solid. The reduced tem- 
perature and heat flux solutions are presented as a 
function of reduced time parameters z and Fo. It is 
demonstrated that the long-time solution for the 
steady-periodic case reduces to the classical steady- 
state solution presented in several textbooks. The limits 
for the long-time solutions are discussed in terms of 
Fo. It is also shown that when the controlling factors 
a and b of the periodic oscillations are equal to zero, 
the reduced temperature and heat flux solutions of the 
steady and non-steady periodic surface heat fluxes 
are reduced to the classical solution for the case of 
constant surface heat flux boundary condition. 

Furthermore, a numerical example on heating of 
malignant tissues is used to demonstrate a difference 
between the long-time and transient solutions. The 
results show that the time to reach the critical tem- 
perature (42-46°C) for the therapeutic treatment is 
strongly dependent on the chosen solution. For ex- 
ample, the long-time solution shows that the desired 
temperature will be reached in about 1.39 h compared 
with 1.50 h predicted by the transient solution when 
the frequency of periodic oscillation 09 = 1 x 10 -4 rad 
s -l ,  the initial temperature Ti = 30°C, the controlling 
factor a = 0.5, and the constant surface heat flux 
Q0 = 200 W m -2. 
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] T(x, t) = ~ ell (x, t -- r) dr . 

Using Leibnitz's rule of differentiation, we get 

T(x,t) =*~(x,0)+ ~[O~(x,t-'c)d-c] 

o r  

where 

~x '/: f' I- - x  ~ q dr 
= g(x)+ J0f( ) exp/ J  

(A6) 

(A7) 

d [  ( 2 - ~ t ) ]  x / 2 e x p ( - - x 2 / 4 a t )  (A8) 
dt erfc = x/g~ t 3/2 

APPENDIX A 

In the following analysis, we discuss the use of Duhamel 's  
method [1, 2] for the solution of heat conduction problems 
subject to time-dependent heat flux boundary conditions. 
The governing equations are 

~?2T(x,t) 1 OT(x,t) 
c~x 2 ~ ~t (A1 a) 

with 

T(x,O) = g(x), g"(x) = 0 (Alb)  

_ k  OT(t) 
Ox =f ( t ) "  (Ale) 

Consider the following auxiliary problem in which O,(x, t) is 
the solution of problem (A 1) on the assumption that ~ ( t )  is 
independent of t, i.e. 

02¢~(x, t) 1 c~¢~(x, t) 
- -  - (AZa) 

OX 2 a c~t 

with 

Odx,  O) = g(x) (A2b) 

k ~o,(t) 
ax - f ( z ) .  (A2c) 

The Laplace transform of equations (A2a)-(A2c) with 
respect to t gives 

02(b,(x, s) _ s ~,(x ,  s) - g ( x ) / s  (A3a) 
cg x z o~ 

~ ( x ,  O) = g(x)/s (A3b) 

_kO~(O,s) 
Ox =f (z ) / s .  (A3c) 

The solution of system (A3) can be written as 

~ ( x , s )  - °d/zf(z) e-~4~/~ +g(x)/s.  (A4) 
ks312 

Taking the inverse Laplace transform, we obtain 

~ l/2f(,~) [ 2 tl/~ e_;/,o , ¢I,~(x, 0 = ~ l ~  

x erfc +g(x).  (A5) 
0~1/2 

According to Duhamel 's  theorem [1-3], the solution to the 
system (A1) is 

APPENDIX B 

It should be noted that  the integrals occurring in equations 
(5) and (16) can be represented as [6] 

Cr(a ,x ;b)  = f ' - l e  ~cos(b/t)dt  (BI) 
x 

and 

Sr(~, x ; b) = J x  t~- ~ e - '  sin (b/t) dt. (B2) 

These functions belong to the family of the Weyl fractional 
integrals [7], and satisfy the following formulae [8] : 

Cr(o~,x;co)-iSr(o~,x;co) = F(~,x;ico) (B3) 

Cv(c~+ 1,x;co) = ccCr(c¢, x;  co) 

+ c o S v ( ~ - l , x ; c o ) + x ' e - X c o s ( c o / x )  (B4) 

S r ( ~ +  1,x;e~) = ccSr(~, x;co) 

- c o C r ( ~ - l , x ; c o ) + x ' e - X s i n ( c o / x ) .  (B5) 

A tabular and graphical representation of the functions Cr 
and Sr is given in ref. [8]. We note that for b = 0, equation 
(B 1) reduces to 

Cr (~ ,x ;0 )  = F(~,x) = t ~-1 e - ' d t .  (B6) 
x 

It should be noted that  for x = 0 and ~ = ½+n, n = 0, 1, 2, 
3 . . . . .  the real and imaginary parts in eqaation (B3) can be 
simplified in terms of trigonometric functions [8]. In particu- 
lar, we have 

Cr(1/2, 0 ;09) = n 1/2 exp ( - ~/2co) cos (x/2co) (B7) 

St( l /2 ,  0 ; co) = n t/2 exp ( -  ~/2co) sin (~/2co) (B8) 

7~U 2 
C r ( -  1/2, 0;co) = - - e x p  ( -  ~/2co) cos [(~/2co) + n/4], 

,/co 

(B9) 

~U2 
Sr ( -  1/2, 0 ; co) = ~ exp ( -  x/2co) sin [(x/2co) + n/4] 

(B10) 

7~1/2 
Cr( - 3/2, 0 ; co) = ~ exp (--,,/2o9) 

• - - [ s i n  x/2co sin [(~/2co) + n /n i l  

× L 4 c o  + 2o, J 
(B l l )  
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__~1/2 
S r ( -  3/2, 0 ; co) = - ~ - -  exp ( -  x/2co) 

Fcos x/2to cos [(x/2co) + lr/4]_l 

"< L 7- + j 

~ x  J a r  (ct, x ; b x )  ] = - [ b S r  (¢t - -  1, x ; b x )  + x ~ - I e -  ~ cos (b)] 

(B12) and 
(B13) 

0 
~ x  [Sr(ct ,  x ;  b x ) ]  = [ b C r  (c~ - 1, x ; b x )  - x  ~ - j e x sin (b)]. 

and the differenliation formulae for C r ( ~ , x ; b x )  and 
Sr(~, x ; b x )  with respect to x are given by (B14) 


